
Arbiter: Dynamically Limiting Resource Consumption
on Login Nodes

Dylan Gardner
dylan.gardner@utah.edu

Center for High Performance
Computing

University of Utah
Salt Lake City, Utah

Robben Migacz
robben.migacz@utah.edu

Center for High Performance
Computing

University of Utah
Salt Lake City, Utah

Brian Haymore
brian.haymore@utah.edu

Center for High Performance
Computing

University of Utah
Salt Lake City, Utah

ABSTRACT
In a high-performance computing (HPC) environment, shared re-
sources are often the most capricious and unreliable. The perfor-
mance of each process is affected by the behavior of all connected
users. This applies particularly to the login nodes of HPC clusters,
which are used by multiple people at a time. Often, policies govern
their use, typically limiting users to small, lightweight tasks such
as scripting, compiling, submitting batch jobs, and staging data. If a
user is behaving poorly, such as using a significant portion of CPU
time or consuming a large fraction of the total memory, processes
using the same resources can be slowed or run out of memory.
Policies on login nodes that prohibit such behavior, however, may
not be enforced automatically because of technical limitations.

Arbiter is a service that overcomes such limitations by using
cgroups, a feature of the Linux kernel, to monitor and limit usage.
It can both enforce default limits—to ensure the server remains
responsive—and penalize users who are consuming resources im-
moderately while still allowing for brief testing of workloads better
suited to computational resources. Arbiter tracks the total memory
and CPU usage of a user, reduces the quantity available for a period
of time if usage is excessive, and sends emails to inform users of
policies and potentially impactful behaviors. Throttling performed
by Arbiter encourages users to use computational resources for
intensive tasks (through the batch system), thereby supporting the
reliability and responsiveness of login nodes.

KEYWORDS
cgroups, systemd, monitoring, throttling

ACM Reference Format:
Dylan Gardner, Robben Migacz, and Brian Haymore. 2019. Arbiter: Dy-
namically Limiting Resource Consumption on Login Nodes. In PEARC ’19:
Practice and Experience in Advanced Research Computing, July 28–August
1, 2019, Chicago, IL. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3332186.3333043

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC ’19, July 28–August 1, 2019, Chicago, IL
© 2019 Association for Computing Machinery.
ACM ISBN 78-1-4503-7227-5/19/07. . . $15.00
https://doi.org/10.1145/3332186.3333043

1 INTRODUCTION
Login nodes are the gateways to computational resources at the
Center for High Performance Computing (CHPC), among other re-
search computing sites, and provide an environment for lightweight
tasks such as analyzing data, transferring small sets of data, and sub-
mitting jobs to a scheduler. Such nodes are a limited resource and
abuse, often by new users who are not aware of policies for node
usage or users who are trying to circumvent the scheduler queue,
can cause performance degradation for other users. Excessive mem-
ory or CPU usage can significantly reduce the responsiveness of
login nodes and interrupt the workflows of others.

System administrators have several tools available to limit the
impact an individual user can have on a server. Control group
(cgroup) [6] controllers can be set to limit access to resources. Such
controls are present on CHPC login nodes to reserve memory for
the system and prevent failure when users deplete the available
memory. This alone, however, cannot police usage on the user level;
it is still possible for a subset of users on the node to consume
memory and CPU cycles in excess, thereby affecting other users
connected to the same node.

Arbiter therefore not only limits per-user resource usagewith the
use of cgroups but also allows for the setting of a threshold or trigger
level above which a user is tracked. When users remain above the
trigger levels for a determined period of time, they are placed in a
“penalty” state. In addition, Arbiter enforces tiered penalty states if
a user is repeatedly identified as being in violation of the policies
with increased throttling for a longer period of time. In contrast
to other existing solutions, these dynamic resource limits have a
greater impact on users who repeatedly abuse interactive nodes.
This approach is shown in Figure 1, where throttling (right) reduces
the system load further than static quotas (center).

When a user violates the administrator-defined policies, the
Arbiter service notifies the user and CHPC staff of excessive CPU
or memory usage. This facilitates discussions of acceptable usage
on login nodes and helps train new users who are unfamiliar with
HPC cluster environments and usage policies.

2 BACKGROUND
First released in the Linux kernel 3.6, cgroups is a feature of the
Linux kernel that allows groups of processes to be monitored and
limited. Resource controllers allow administrators to control and
monitor the specific resources of a cgroup, such as CPU or memory.

https://doi.org/10.1145/3332186.3333043
https://doi.org/10.1145/3332186.3333043
https://doi.org/10.1145/3332186.3333043

PEARC ’19, July 28–August 1, 2019, Chicago, IL Gardner et al.

Figure 1: An example of resource consumption on a node with multiple users. The left plot shows usage without quotas or
throttling: users are not limited. Themiddle plot shows the sameusage scenariowith default cgroupquotas applied, preventing
one user from monopolizing the resource. The plot at right shows both default quotas and throttling for excessive usage,
further reducing overall node utilization.

2.1 systemd cgroup Hierarchy
Since systemd v205, systemd has integrated cgroups into its no-
tion of a unit (slices, services, and scopes) in a custom hierarchy
at /sys/fs/cgroup. Units (such as services in system.service) in sys-
tem.service can be limited and resource consumption accounted for.
A series of slices called user-$UID.slice (this is a child of user.slice,
which applies to all users) contain the processes of specific users
and are automatically created when users log in and destroyed
when they log out with no remaining sessions. This configura-
tion makes it trivial to limit and track a user’s behavior. By de-
fault, the slices do not have resource accounting enabled in con-
trollers like CPU and memory, but these can be turned on for a
specific user with systemctl set-property user-$UID.slice
CPUAccounting=true MemoryAccounting=true. Turning account-
ing on for one cgroup also implicitly turns accounting on for parent
and sibling cgroups.

2.2 Previous Work
Several HPC sites use cgroups to implement limits on user behavior
on shared resources. Such limits are often static and are intended
only to limit the impact individual users can have on a node; few
solutions implement user accounting or dynamic resource quotas.

One example is Maves and John’s cgroups_py [5], which is used
to apply limits on the resources of a given user with the systemd
user-$UID.slice. The service enforces limits when the user is con-
suming excessive CPU time but is based on a simple usage threshold.
The limits are static: users receive the same quotas regardless of in-
dividual usage patterns. The maximum CPU time available to each
user is limited based on the number of users exceeding a minimum
fraction of CPU time. This solution reduces the resources available
to all users on the server without considering individual impact
or past behavior. In addition, the program enforces limits on the
fraction of system memory an individual can use, but this limit is
set statically and cannot be set after quotas are initialized.

A predecessor to the Arbiter service has been running on lo-
gin nodes at CHPC for several years. This first version identified

excessive usage on login nodes and notified involved users and sys-
tem administrators. The service collected information about users’
processes and sent emails when policy violations were detected. It
did not, however, throttle resources and enforcement of policies
required intervention from system administrators. The messages
sent by the service identified processes that may have a significant
impact, but this information was collected instantaneously as the
message was sent and did not show behavioral patterns over time.

Existing solutions for monitoring nodes and limiting a user’s
impact do not provide detailed information about the processes a
user was running. Arbiter’s continual collection of usage metrics
for each user helps justify throttling and allows users to determine
which workloads are suitable for login nodes and which should be
submitted to computational resources through the scheduler.

3 IMPLEMENTATION
The improved Arbiter sets default limits on new cgroups; collects
CPU and memory information, processes the information into an
understandable format; evaluates whether each user’s usage is
violating the usage policy; and, if in violation, takes action on the
user by setting lower usage limits and sending emails. Each step is
completed on a configurable refresh interval.

3.1 Collecting Information
In order to collect information on cgroups, Arbiter pulls informa-
tion from the cgroup hierarchy at /sys/fs/cgroup. When a new
user logs in, a slice is created under each of the controllers that
are enabled for it: /sys/fs/cgroup/cpu/user.slice/user-$UID.slice for
CPU and /sys/fs/cgroup/mem/user.slice/user-$UID.slice for mem-
ory (in cgroups v1). Information is then pulled from each of the
slices’ controllers files: cpu.usage_percpu for CPU usage and mem-
ory.usage_in_bytes for memory usage.

The information pulled from cgroups cannot be used directly;
Arbiter performs calculations to determine a user’s impact. For
example, the CPU information pulled from the cpu.usage_percpu
file is the CPU time the user has used since the creation of his

Arbiter: Dynamic Resource Limits PEARC ’19, July 28–August 1, 2019, Chicago, IL

or her cgroup. The difference in the number of clock ticks over a
period of time is used to approximate usage during that same time.
The memory information is instantaneous and must be averaged
with multiple measurements to achieve an accurate result. Because
average memory consumption is used to evaluate user impact,
Arbiter collects information more frequently than it evaluates users
(averages are calculated over the refresh interval).

To provide users with a clearer picture of what processes con-
tribute to excessive usage, Arbiter collects information on individ-
ual processes. Metrics are collected for each process identification
number (PID). The list of PIDs is read from cgroup.procs file in
the cgroup slice, but the usage of PIDs must be collected from files
in the /proc directory. This per-PID usage is not as accurate (it is
polled less frequently), so process usage is scaled to the cgroup us-
age when it is reported. Short-lived processes, which start and end
between collection intervals, may not appear in plots and tables,
but the overall usage remains accurate because of this mapping
process.

3.2 Evaluating Users
Arbiter determines whether a user has violated the policies for
usage on the node by evaluating the metrics it collects on each
controller. To evaluate metrics, Arbiter calculates a badness score, a
representation of how close the user is to a policy violation, where
a maximum score of 100 is a violation and a minimum score of
0 indicates that the user’s usage has not exceeded the threshold
on acceptable CPU and memory usage. The change in the badness
score is calculated at each refresh interval and added to the previous
badness score. This summation over intervals is used so the rate
of change in the badness score is proportional to resource usage
(unacceptably high usage would yield a higher per-interval bad-
ness score, leading to penalties more rapidly than lower but still
unacceptable usage). The change to the badness score B for a given
resource r in a given time interval is

∆Br =
η

ur
Qr

ur ≥ Cr

−µ
(
1 − ur

Cr

)
ur < Cr ,

where η is the maximum increase and µ the maximum decrease
in badness score for a given unit of time, ur is the fraction of the
resource being used by all processes, Qr is the resource quota, and
Cr is the threshold below which the usage is not considered to be
impactful.

Where ur ≥ Cr (usage is above acceptable usage), the badness
score increases with time; when ur < Cr , it decreases, albeit more
slowly. The net effect is that the user can run programs with re-
source consumption above his or her thresholds for a short time
without being penalized. The constants η and µ are determined by
setting a time for which users can run programs consuming all of
the resources available to them; η is the ratio of Arbiter’s refresh
rate (how frequently the program is run) to the time required to be
penalized at maximum capacity and µ is an arbitrary value (such
that η > µ). The algorithm for determining a user’s badness score is
depicted for an example of resource usage in Figure 2. Resource con-
sumption above the threshold increases the badness score quickly;
below the threshold, the score decreases slowly. The badness score,

Figure 2: An example of the badness score resulting from
user behavior on the node. Only one resource is shown. The
change in the user’s score is determined by distance from
the threshold.

crucially, decreases even when the user is not connected to the
node; this situation is not depicted on the plot.

Some programs’ CPU usage is not considered when evaluating
a user’s impact on the node (based on a whitelist of programs).
Programs typically encouraged on login nodes, such as compilers
and data transfer tools, are ignored when calculating impact on
CPU time to avoid penalizing users for legitimate usage on the
node. Memory, however, is considered for all processes, as it is a
finite resource and cannot be throttled like CPU time. By default,
Arbiter does not operate on users with a user ID below a threshold.
In addition, other users can be made exempt from penalties. This
prevents system accounts from being throttled.

3.3 Tracking a User’s Status
To keep track of what limits should be applied to a user, Arbiter has
several statuses. Statuses contain default resource limits, a thresh-
old defining unacceptable usage, and other attributes like a status-
specific process whitelist. The statuses are defined in the configura-
tion file. A user has only one status at a time (their current status).
He or she also has a default status, which is used as a reference for

PEARC ’19, July 28–August 1, 2019, Chicago, IL Gardner et al.

resource limits when returning from a penalty state. Initially, before
Arbiter has taken any actions or set any limits, a user’s current
status is their default status. This default status is determined by
matching a user’s user ID or group ID with statuses defined by
administrators. If no status contains the attributes, the user’s status
is set to a default. Statuses allow for the categorization of users
(CHPC, for example, has a normal status for most users, an admin
status with an extended whitelist for administrators, and an invin-
cible status that allows for unlimited usage). Arbiter uses statuses
to define limits when users are penalized; throttling is based on the
default status of a user and a fraction of resources for each penalty
state.

3.4 Applying Limits
When a user’s current status changes, the limits associated with
the new status are applied to the user’s cgroup slice. Limits on CPU
are set by writing a quota on the CPU time available to a user to the
cpu.cfs_quota_us file in the CPU hierarchy. Users may utilize the
CPUs on the server until this limit is reached; beyond this point, the
resources will be unavailable for a short time. After this time, the
user can again use CPU time in accordance with his or her default
status. In effect, the processes are slowed by running intermittently.
Arbiter does not attempt to restrict users’ processes to specific
cores. Brief testing across all the cores on a server is possible, which
allows users to evaluate message-passing algorithms as they would
work on computational servers.

The memory allocated to a given user is limited by setting a limit
(in bytes) directly to the memory.limit_in_bytes file in the memory
hierarchy. The memory limit cannot, however, be set when the cur-
rent memory usage exceeds the quota being set. If a user surpasses
his or her memory quota once they have been successfully set, the
kernel will attempt to reclaim memory; if this is not possible, an
out-of-memory routine (called the out-of-memory killer) “is invoked
to select and kill the bulkiest task in the cgroup” [2].

Arbiter makes an effort to limit a user’s memory to the minimum
possible value. If a memory quota cannot be set, the limit itself is
incrementally increased and the new, higher value is applied instead.
Arbiter checks users’ memory quotas against the expected value
each time it runs and sets the quotas again if there are discrepancies.
If processes relinquish memory (if they run out of memory and are
killed, for instance), the quota can be set nearer the user’s limit.
While quotas on memory usage might not be possible when a user
is first throttled, the process of continually checking and updating
the cgroup limits ensures the quota will be as close to the expected
value as possible.

3.5 Default Limits
To prevent users from suddenly abusing the login nodes and affect-
ing the work of others, Arbiter sets default limits on each user. This
prevents an individual user from using excessive CPU and memory.

There are two ways that administrators can apply such default
limits. A script can be integrated into the Linux Pluggable Authen-
tication Modules (PAM) stack to set a fixed default limit when a
user logs in or, as at CHPC, Arbiter can automatically detect new
users every refresh interval and apply default limits then (using the
--status-on-creation flag). The latter requires fewer changes to

the system and allows for dynamic default limits based on a user ID
or group ID, making it possible to set higher or lower default limits
for certain users, at the administrator’s discretion. The downside
of the latter approach is that users can potentially abuse resources
for a short time when they first log in, before Arbiter runs and
the default limits are applied. In practice, this is unlikely: it gener-
ally takes time for resource consumption to increase and become a
nuisance.

3.6 Tiered Penalty Statuses
When Arbiter detects that a user has violated the established usage
policies, it applies a penalty status. There are different levels of
penalty statuses, but they all penalize the user for a set period of
time with lower quotas on each resource. The penalties are applied
in tiers. When a user is penalized repeatedly, the length of time he
or she spends in a penalty status is increased and the resources avail-
able are further decreased. Ideally, this throttling with increasing
penalties should discourage users from running computationally-
intensive tasks for an extended time and is intended to be only a
minor inconvenience for users with legitimate interactive work
suited to login nodes. It should, however, lessen the impact of large
tasks that are left running long enough to warrant increased throt-
tling.

Tiered penalties are enforced by tracking the number of times a
user has been penalized: each time a penalty status is applied, this
count increases. It is decreased automatically with time. As a result,
users who infrequently exceed the thresholds will not be throttled
to the same extent as users who repeatedly do so in a short time.

3.7 System Requirements and Setup
Arbiter is written for CentOS 7 systems deployed at CHPC. It should
be operable on Linux kernel versions beyond 3.10, provided cgroups
v1 is used. More recent versions of systemd use a hybrid mode
integrating cgroups v1 and v2 (though the mode will be superseded
by the unified mode of cgroups v2) [?]. Arbiter can be deployed
on systems with a hybrid hierarchy (by setting memsw = false
in the configuration files), though some functionality may not be
available. The Arbiter source and installation instructions are found
in Appendix A.

Arbiter is designed to run as a systemd service. This makes it
easy to restart and manage. It also means the service has its own
cgroup, separate from a user slice (so it cannot limit itself). Output
is logged to a configurable directory. The verbosity of the output
when --print (-p) is used can be controlled with the --verbose
(-v) and --quiet (-q) flags.

The Arbiter service has several prerequisites. It requires Python
3.6 or newer. In addition, Python packages like matplotlib and
toml need to be installed. Next, a log directory must be created
and the configuration files must be updated to reflect this location.
Finally, modifications to the sudoers file are required if Arbiter is
not run as root. Flags to modify the service’s behavior, including
the option to use sudo, are shown in Table 1.

Configuration files can bemade independent and distinct for each
node. Limits can be adjusted to accommodate different usage types
on different resources. The configuration files contain options to set
Arbiter’s refresh and collection interval, the amount of information

Arbiter: Dynamic Resource Limits PEARC ’19, July 28–August 1, 2019, Chicago, IL

Flag Description

--rhel7-compat Runs Arbiter with RHEL 7/CentOS 7 compatibility.

--status-on-creation Applies the statuses when Arbiter first detects new users.

--accounting Turns on accounting for all users by turning it on for a specific, persistent user.

--etc Sets the directory of configurable modules.

--config Sets the configuration files to use. Configurations cascade if multiple files are specified.

--sudo Uses sudoers permissions to write out limits and to enable cgroup accounting.

--print Prints the Arbiter service’s logging to stdout.

--verbose Turns on more verbose output.

--quiet Outputs only critical information.

--exit-file Tells Arbiter to stop itself (and restart, if enabled in the service file) if a file is updated.

Table 1: The flags that can be used to change the behavior of Arbiter.

kept in memory, the limits on specific users, and email and log
settings. They are extensible and can be used to apply Arbiter at
sites other than CHPC and on a variety of resources.

3.8 Permissions and Security
Arbiter requires access to files in the cgroup hierarchy. The number
of files required, however, is minimal; permissions are granted only
where necessary.

Arbiter writes limits to the files in the cgroup hierarchy; this is
generally faster than running shell commands from within Python.
It also requires, however, that the user running the service has
permission to modify the files (which are otherwise owned by root).
To accomplish this, the group associated with cgroup files is set to
a group of which the user running Arbiter is a member. Commands
to set the permissions on such files are defined in a custom sudoers
file. This file can be generated using a script to minimize the burden
on system administrators. When a new user is detected, the file
permissions are updated from the command line. This must occur
each time a new user connects to the node but is not necessary for
new connections by users already on the node (who are present in
the cgroup hierarchy).

4 NOTIFYING AND EDUCATING USERS
The information collected by Arbiter while evaluating usage on a
node is included in reports sent to users and administrators when
users’ statuses are updated. The historical information provided by
Arbiter is a representation of a user’s impact on a machine. The
resource consumption is shown in both a table and plots; in previ-
ous versions of the script, only instantaneous usage metrics were
available. Arbiter now provides historical context for its throttling
and other actions. An example of the plots generated by Arbiter
is shown in Figure 3; it contains a recent history of processes and
the threshold for processes to be considered impactful. Messages
from Arbiter also include descriptions of policy and expectations
on login nodes.

When throttling is removed (a user returns to a default status), a
message is sent to notify the user and system administrators. This

message includes a description of the expectations on login nodes
and provides references to policy information.

In addition to evaluating individual users’ impacts, Arbiter also
periodically checks the overall utilization of the nodes on which it
is deployed. If the fraction of total CPU or memory usage is above
thresholds set by the administrators, the service notifies CHPC
staff and lists connected users in order of resource usage. This
system helps administrators take action to prevent the aggregated
activity of users from becoming excessive and rendering the node
unresponsive.

5 LIMITATIONS AND POTENTIAL
IMPROVEMENTS

During the development and testing of Arbiter, some limitations
relating to the operating system (CentOS 7 at CHPC) and associated
versions of systemd became apparent. One such issue is a bug in
systemd (found in v219 and fixed in v240) that requires account-
ing be enabled each time Arbiter starts because enabling cgroup
accounting does not persist on reboot [4]. Another limitation is the
limited support of kernel memory in the cgroups memory controller
on CentOS 7. This prevents Arbiter from getting accurate data from
memory.usage_in_bytes since that file accounts for kernel memory,
but the value in the memory.kmem.usage_in_bytes file—normally
used to subtract that kernel memory usage—is zero [1]. To resolve
this issue, Arbiter replaces cgroup memory data with the sum of
a user’s collected PID memory data if the --rhel7-compat flag is
used.

Since the Linux kernel 3.10 and systemd v219, many improve-
ments have been made to systemd cgroups. Upgrading to cgroups
v2 and a new version of systemd would not only resolve the is-
sues above but would also allow for new features. For example,
systemd v239 adds unit slice drop-ins, allowing default limits of
user-$UID.slice to be applied automatically when a slice is created
without a PAM integration [3].

Another limitation is that Arbiter evaluates users’ impacts on
individual nodes with no regard for behavior on other nodes. When
a status is updated, the limitations imposed on the user apply only
on the node on which the violation of policy was noted. Future

PEARC ’19, July 28–August 1, 2019, Chicago, IL Gardner et al.

improvements may include adding a shared database that allows
user tracking and limiting to apply across multiple nodes simulta-
neously. A centralized database server could then be used to effect
penalties on all login nodes when excessive usage is discovered on
one.

One of the more common usage patterns on HPC login nodes is
datamovement between clusters. This is a legitimate use of the login
nodes often consumes considerable CPU, memory, and time writing
to disks and network interfaces, which can affect responsiveness.
One potential improvement of Arbiter could be to use the input and
output or networking cgroup controllers to gain additional insight
about usage and further limit individuals’ impact on nodes.

6 CONCLUSION
Arbiter, a service that tracks usage on login nodes and automatically
limits users’ access to resources with cgroups, has recently been
deployed on nodes at CHPC. The service collects usage metrics, ap-
plies limits automatically, and informs users of potential violations
of usage policies.

Arbiter is a new technology and has been introduced in produc-
tion environments at CHPC only recently; its impact cannot be
quantified reliably. However, the service reduces the load each user
can place on a given login node and is expected to improve reliabil-
ity. It throttles users an average of 10.7 times each day across the
login nodes at CHPC and prevents individual users from monopo-
lizing resources. The number of overall high usage emails received
by CHPC staff is plotted in Figure 4; usage on nodes has decreased
since Arbiter started throttling and sending emails to users. Prior

Figure 3: An example of the plots included in an email. The
plots show both CPU and memory utilization over time to
help users identify problematic behaviors and processes.

Figure 4: The number of overall high-usage emails received
by CHPC staff. Arbiter was enabled and started enforcing
limits in early April; at this time, the load on login nodes
decreased substantially.

to this time, it was running but sending emails only to CHPC staff
and not throttling any users. In the short time Arbiter has been
deployed, it has identified several users who have been misusing
login nodes repeatedly and has facilitated communication because
of its graphical and verbose email updates.

ACKNOWLEDGMENTS
We would like to thank Anita Orendt and the user services team
at CHPC for their continued support. We would also like to thank
Paul Fischer for his contributions and suggestions and Albert Lund
for his work on the predecessor of the Arbiter service.

REFERENCES
[1] [n. d.]. Enabling kmem accounting can break applications on CentOS7. https:

//github.com/opencontainers/runc/issues/1725.
[2] [n. d.]. Memory Resource Controller. https://www.kernel.org/doc/Documentation/

cgroup-v1/memory.txt.
[3] [n. d.]. systemd System and Service Manager. https://github.com/systemd/

systemd/blob/master/NEWS.
[4] Ryutaroh Matsumoto. 2018. systemd-run --user -t -p MemoryHigh=1G stopped

working. https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=903011.
[5] Curtis Maves and Jason St. John. 2018. cgroups_py: Using Linux Control Groups

and Systemd to Manage CPU Time and Memory. (2018).
[6] Paul Menage. [n. d.]. cgroups. https://www.kernel.org/doc/Documentation/

cgroup-v1/cgroups.txt.

https://github.com/opencontainers/runc/issues/1725
https://github.com/opencontainers/runc/issues/1725
https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
https://github.com/systemd/systemd/blob/master/NEWS
https://github.com/systemd/systemd/blob/master/NEWS
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=903011
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

Arbiter: Dynamic Resource Limits PEARC ’19, July 28–August 1, 2019, Chicago, IL

A ACQUIRING AND INSTALLING
The Arbiter source is open to other sites interested in deploying
or extending it. It is available through a Git repository (located
at https://gitlab.chpc.utah.edu/arbiter2/arbiter2), which also con-
tains guidelines for configuring and installing the service. Problems
during the installation process can be addressed with the log files
generated by Arbiter (with -v to enable verbose output) or the logs
associated with the service (when configured).

A.1 Installation Process
The installation process is bundled with the source. The instructions
may vary with different operating systems and environments. In
general, the Arbiter service can be installed by

(1) installing a recent version of Python 3 (version 3.6 or higher
for the current release of Arbiter);

(2) installing the required Python packages (such as matplotlib,
requests, and toml);

(3) configuring a user to run the service, such as root or a user
with limited superuser privileges;

(4) verifying the configuration file and any site-specific variables
or functions for correctness;

(5) testing the configurations and installations by running the
scripts directly; and

(6) setting up a service to run the scripts (this process is facili-
tated by a shell script).

The installation procedures are described in further detail in the
installation guide included with the source. Because Arbiter is still
being developed, system administrators should consult the updated
installation guide (which may differ from the above instructions)
when installing the service.

https://gitlab.chpc.utah.edu/arbiter2/arbiter2

	Abstract
	1 Introduction
	2 Background
	2.1 systemd cgroup Hierarchy
	2.2 Previous Work

	3 Implementation
	3.1 Collecting Information
	3.2 Evaluating Users
	3.3 Tracking a User's Status
	3.4 Applying Limits
	3.5 Default Limits
	3.6 Tiered Penalty Statuses
	3.7 System Requirements and Setup
	3.8 Permissions and Security

	4 Notifying and Educating Users
	5 Limitations and Potential Improvements
	6 Conclusion
	Acknowledgments
	References
	A Acquiring and Installing
	A.1 Installation Process

